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Abstract

Glucagon-like peptide-2 (GLP-2) is a 33 amino acid peptide hormone released from the intestinal endocrine cells following nutrient
ingestion. GLP-2 exerts trophic effects on the small and large bowel epithelium via stimulation of cell proliferation and inhibition of
apoptosis. GLP-2 also upregulates intestinal glucose transporter activity, and reduces gastric emptying and gastric acid secretion. The
activity of GLP-2 is regulated in part via renal clearance and cleavage by the aminopeptidase dipeptidyl peptidase IV. In experimental
models of intestinal disease, GLP-2 reversed parenteral nutrition-induced mucosal atrophy and accelerated the process of endogenous
intestinal adaptation in rats following major small bowel resection. GLP-2 also markedly attenuated intestinal injury and weight loss in
mice with chemically-induced colitis, and significantly reduced mortality, bacterial infection and intestinal mucosal damage in mice with
indomethacin-induced enteritis. The actions of GLP-2 are transduced by a recently cloned glucagon-like peptide-2 receptor (GLP-2R) that
represents a new member of the G protein-coupled receptor superfamily. The GLP-2R is expressed in a highly tissue-specific manner
predominantly in the gastrointestinal tract and GLP-2R activation is coupled to increased adenylate cyclase activity. The available
evidence suggests that the biological properties of GLP-2 merit careful therapeutic assessment in selected human diseases characterized by
injury and defective repair of the gastrointestinal epithelium.  2000 Elsevier Science B.V. All rights reserved.
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1. Introduction multipotential regulator of blood glucose via effects on
appetite, gastric emptying and both insulin and glucagon

Tissue-specific processing of proglucagon results in the secretion [1,4]. In contrast, until very recently, the bio-
synthesis of several biologically relevant peptides (Fig. 1). logical actions of GLP-2 have remained unknown. The aim
Glucagon, glucagon-like peptide-1 (GLP-1) and glucagon- of this manuscript is to review the key studies that have
like peptide-2 (GLP-2), all of which are derived from elucidated the biological relevance and mechanism of
proglucagon, are highly homologous and have been impli- action of GLP-2.
cated in regulating many metabolic pathways and physio- GLP-2 is an intestinotrophic hormone that promotes
logical systems [1]. Glucagon, secreted by the pancreatic expansion of the epithelial mucosa through stimulation of
A-cells in the islets of Langerhans, is a well established crypt cell proliferation and the inhibition of cell death in
regulator of glucose metabolism [1–3]. Following the the intestinal epithelium [4–6]. A potential link between
elucidation of the structure and sequence of the prog- increased secretion of the glucacon-related peptides and
lucagon cDNAs and genes, two glucagon-related peptides, the development of intestinal villus hyperplasia was first
GLP-1 and GLP-2, were found carboxyterminal to the established following clinical reports of patients with
glucagon sequence in proglucagon (Fig. 1). A substantial glucagon-secreting tumors who presented with small bowel
body of experimental evidence implicates GLP-1 as a villus hyperplasia [5,6]. These cases stimulated consider-

able interest in the relationship between increased secretion
of intestinal glucagon-related peptides and the response to*Corresponding author. Tel.: 1 1-416-340-4125; fax: 1 1-416-978-
intestinal injury in both rodents and in human subjects with4108.
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Fig. 1. Structure of proglucagon and the molecular forms of glucagon-like peptide-2 (GLP-2). The molecular forms of GLP-2-immunoreactive peptides
1-33 3-33include the major proglucagon fragment (MPGF), bioactive GLP-2 and the bioinactive GLP-2 .

Despite an extensive series of experiments linking DP IV-resistant GLP-2 analogues such as [Gly2]-GLP-2
increased proglucagon gene expression and increased that exhibit increased potency in vivo [25,26].
secretion of the intestinal proglucagon-derived peptides Consistent with numerous studies demonstrating nu-
(PGDPs) with experimental intestinal injury [10–16], the trient-dependent increases in intestinal GLP-1 secretion
identity of the specific PGDP with intestinotrophic activity [1,4], GLP-2 is also secreted following nutrient challenge
proved elusive. Following the observation that mice har- in vivo [23,27]. Analysis of GLP-2 secretion in human
boring subcutaneous glucagonomas exhibited significant feeding studies demonstrated that the control of meal-
villus hyperplasia of the small bowel epithelium, peptide stimulated GLP-2 release is sensitive to nutrient com-
injection experiments identified GLP-2 as the PGDP with position [28]. Isocaloric meals enriched in carbohydrates

1-33significant intestinotrophic activity in vivo [17]. or fats potentate GLP-2 secretion 2–5 fold over basal
levels, whereas isocaloric meals consisting of protein did

1-33not stimulate post-prandial GLP-2 release. Meal-stimu-
1-33lated GLP-2 release is biphasic, with an early peak

2. GLP-2 synthesis and secretion occurring 10-min post-ingestion and a second peak detect-
able about 1 h later depending on meal size [28,29]. This

GLP-2 and GLP-1 are generated via post-translational biphasic response is consistent with a rapid initial humoral
processing of proglucagon [18,19] and are liberated in or neural phase of PGDP release likely under vagal control
enteroendocrine L-cells as a consequence of the expression [30,31] followed by a later phase possibly attributable to a
of a specific profile of prohormone convertase enzymes direct interaction between undigested luminal contents and
[20]. GLP-2 is also synthesized in the brainstem and the distally located intestinal L-cells or through physical
hypothalamus [21,22] of the central nervous system (CNS) forces arising via fluctuations in ileal volumes [29].
although the factors regulating CNS GLP-2 synthesis and Several lines of experimental evidence suggest that mild
release are less well understood. to moderate intestinal injury in animal studies is associated

At least three molecular forms (Fig. 1) of GLP-2 have with increased circulating levels of the intestinal PGDPs
1-33been identified [23] consisting of bioactive GLP-2 and including GLP-2 [8,16,32,33]. Similarly, human subjects

3-33two inactive forms, GLP-2 and the major proglucagon with inflammatory bowel disease (IBD) exhibit increased
fragment (MPGF). Determinants of GLP-2 metabolism levels of plasma GLP-2, and a relative shift in the ratio of

1-33 3-33include renal clearance [24] and enzymatic inactivation by GLP-2 :GLP-2 , resulting in increased levels of
1-33dipeptidyl peptidase IV (DP IV) at the penultimate amino bioactive GLP-2 in IBD patients [34]. In contrast, more

acid residue rendering GLP-2 biologically inactive [23,25]. severe damage to the intestinal mucosa, as observed in
The finding that GLP-2 is rapidly inactivated by cleavage mice with severe colitis, likely results in destruction of
at the position-2 alanine has stimulated the development of GLP-2-secreting enteroendocrine cells and reduced capaci-
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ty for GLP-2 biosynthesis [35]. Furthermore, resection of infusion also reduced sham feeding-stimulated gastric acid
large amounts of functional intestinal mucosa, as occurs in secretion in healthy human subjects, albeit at high to
human subjects with short bowel syndrome, results in supraphysiological levels of plasma GLP-2 [46]. Although
lower levels of fasting GLP-2 and deficiencies in meal- GLP-2 stimulates adenylate cyclase activity in hypo-
stimulated GLP-2 release [29]. thalamic and pituitary extracts in vitro [47], the role of

GLP-2 in the CNS in vivo remains unclear.

3. Physiology of GLP-2 action
4. Therapeutic application of GLP-2 in experimental

The earliest description of GLP-2 bioactivity was the intestinal injury
stimulation of small bowel mucosal hyperplasia in GLP-2-
treated mice [17]. The expansion of the villus epithelium is The observation that GLP-2 promotes expansion of the
attributable to increased crypt cell proliferation and de- intestinal epithelium has stimulated considerable interest in
creased enterocyte apoptosis [36]. The intestinotrophic the potential therapeutic role of GLP-2 in the setting of
properties of GLP-2 were subsequently confirmed in intestinal disease. Given the demonstrated importance of
several independent studies [37–39]. Although the small enteral nutrition in both the maintenance of the intestinal
bowel is most sensitive to the trophic actions of GLP-2, a epithelial mucosa and the stimulation of GLP-2 secretion,
modest increment increase in the mass of the colonic Chance and colleagues examined the trophic effects of
epithelium is also observed following treatment with more GLP-2 in parenterally fed rats. Remarkably, whereas rats
potent GLP-2 analogues [26]. maintained only on intravenous nutrition exhibited marked

Although GLP-2 hypersecretion from glucagonomas mucosal atrophy, co-infusion of GLP-2 along with paren-
induces bowel growth [17], few models exist where teral nutrition completely reversed villus atrophy and
endogenous GLP-2 hypersecretion is associated with hy- mucosal hypoplasia in the small bowel [48].
perplasia of the mucosal epithelium. A notable exception As major small bowel resection is associated with
appears to be experimental rodent diabetes, where in- increased secretion of the intestinal PGDPs and increased
creased secretion of intestinal PGDPs leads to elevated proglucagon gene expression in the intestinal remnant
levels of circulating GLP-2 and increased mucosal thick- [14,15], a role for GLP-2 in intestinal adaptation seems
ness in the small bowel [40,41]. Treatment of diabetic rats plausible. Rats subjected to major small bowel resection
with insulin lowers the levels of circulating GLP-2 and (MSBR) exhibit an endogenous adaptive response that is
reverses the mucosal hyperplasia in the small bowel [41]. significantly augmented, predominantly in the jejunum, by

Following treatment of mice and rats with exogenous concomitant treatment with h[Gly2]-GLP-2 [49]. In addi-
GLP-2 for 7–10 days, a marked increase in villus height tion to upregulation of DNA, RNA and protein synthesis, a
and small bowel mass and a smaller increment in small significant reduction in xylose absorption observed in
bowel length is consistently observed [17,25,26,36,42]. control resected rats was completely reversed in resected
The GLP-2-treated bowel exhibits normal protein and rats receiving h[Gly2]-GLP-2. These findings, taken to-
RNA content, and comparable levels of intestinal enzymes gether with the observation that human patients with short
such as maltase, sucrase, lactase, glutamyl transpeptidase bowel syndrome exhibit defective GLP-2 secretion in
and DP IV following normalization for bowel weight [43]. response to nutrient challenge, suggest that GLP-2 replace-
Furthermore, nutrient absorption is normal to enhanced in ment in patients with short bowel syndrome merits further
mice treated with GLP-2 for 10 days. Consistent with these evaluation [29].
findings, GLP-2 infusion in TPN-fed rats upregulates the The therapeutic potential of GLP-2 has also been tested
expression of digestive enzyme gene expression [44]. In in rodents with intestinal injury and inflammatory bowel
contrast to GLP-1, acute administration of GLP-2 has no disease. Mice with dextran sulfate-induced colitis exhibit
effect on oral glucose tolerance [43]. These findings severe intestinal injury and weight loss that is markedly
demonstrate that the morphological macromolecular attenuated following twice daily co-administration of
changes in the small bowel epithelium that accompany h[Gly2]-GLP-2 [35]. Similarly, small bowel injury that
GLP-2 treatment are likely to be associated with normal to rapidly ensues following induction of enteritis with in-
enhanced intestinal absorptive function in vivo. domethacin treatment is significantly improved by the

In addition to the intestinotrophic effects of GLP-2 that administration of h[Gly2]-GLP-2 [50]. Remarkably, ad-
require several days of GLP-2 administration to become ministration of GLP-2 prior to, concomitant with or
evident, several more rapid actions of GLP-2 have been following indomethacin administration significantly im-
described that are detectable within minutes following proved survival in mice. Furthermore, GLP-2 improved
intravenous GLP-2 infusion. These include stimulation of histological indices of disease activity and markedly
hexose transport and induction of glucose transporter reduced the prevalence of bacterial infection [50].
activity in the rat small bowel epithelium, and inhibition of Positive effects of GLP-2 treatment have also been
insulin-stimulated antral motility in the pig [45]. GLP-2 observed following ischemic bowel injury in rats. Intraven-
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ous infusion of GLP-2 following superior mesenteric artery example, the cellular localization and signaling properties
occlusion enhanced mucosal repair and significantly de- of the endogenous intestinal GLP-2 receptor have not yet
creased mortality [51]. Taken together, the available been described. Whether the trophic and metabolic ac-
evidence clearly demonstrates that GLP-2 exhibits utility tivities of GLP-2 in the intestine represent essential or
in preventing bowel injury, and in enhancing the reparative redundant biological actions awaits the development of
response to intestinal injury in both the small and large potent and specific GLP-2 antagonists and/or a GLP-2
bowel. receptor knockout mouse. What are the actions, if any, of

GLP-2 in the CNS? Given the substantial evidence sup-
porting beneficial effects of GLP-2 in preclinical ex-

5. GLP-2 action and the GLP-2 receptor perimental models of intestinal injury, does GLP-2 have a
role in the treatment of human intestinal diseases char-

The mechanisms by which GLP-2 rapidly enhances acterized by epithelial damage or suboptimal nutrient
intestinal glucose transport within minutes of administra- absorption? If we have learned anything from the track
tion remain poorly understood. An important advance in records of glucagon and GLP-1 research, it seems likely
the study of GLP-2 action was the cloning of the human that the study of GLP-2 action will likely prove to be an
and rat GLP-2 receptors [52] by Munroe and colleagues at exciting and fruitful area with potential clinical relevance
Corp. Allelix. The mammalian GLP-2 receptor shares for the treatment of several human intestinal diseases
considerable sequence identity with the glucagon and characterized by defective repair or function of the intesti-
GLP-1 receptors and with related members of the nal mucosa.
glucagon-secretin receptor superfamily [52]. Analysis of
GLP-2 receptor expression by RNAse protection and RT-
PCR, detected GLP-2R mRNA in rodent stomach, intestine Acknowledgements
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